國內外甲醇制氫技術在研究和應用方面都取得了長足的進步,但仍面臨一些挑戰,如進一步降低成本、提高催化劑性能、完善基礎設施建設等。未來,隨著技術的不斷創新和完善,甲醇制氫技術有望在全球能源領域發揮更加重要的作用。
對比研究法也是本文的重要研究方法之一。將甲醇制氫技術與其他常見制氫技術,如水電解制氫、天然氣重整制氫等進行多方面對比。在成本對比中,綜合考慮原料成本、設備投資、運行維護成本等因素,分析不同制氫技術在不同規模下的成本差異;在技術性能對比中,比較各種制氫技術的氫氣純度、制氫效率、反應條件等關鍵指標。
分析甲醇制氫與其他能源形式,如太陽能、風能等可再生能源的耦合方式,以及如何通過能源系統的優化配置,實現能源的利用和可持續供應。例如,研究甲醇制氫與太陽能光伏發電的結合。
在光伏發電過剩時,利用電能電解水制氫,再將氫氣轉化為甲醇儲存;在能源需求高峰或光伏發電不足時,通過甲醇制氫滿足能源需求,實現能源的時空轉移和互補利用。內容上,本文創新性地對甲醇制氫現場運用中的安全管理與風險防控進行了深入研究。
接著,一氧化碳與水蒸氣發生水煤氣變換反應,(CO + H_{2}Orightleftharpoons CO_{2} + H_{2}),進一步生成氫氣,提高氫的產率。通過控制反應溫度、壓力以及原料的摩爾比((H_{2}O)與(CH_{3}OH\)摩爾比一般為 1.0 - 5.0 )等條件,可以優化反應的進行,提高甲醇的轉化率和氫氣的選擇性。
甲醇部分氧化制氫的反應方程式(CH_{3}OHfrac{1}{2}O_{2}rightleftharpoons 2H_{2} + CO_{2})(Delta H^{0}= - 155kJ/mol),該反應為放熱反應。在反應過程中,甲醇與適量的氧氣發生部分氧化反應,氧氣的加入量對反應的影響至關重要。