關鍵詞 |
縣停車場車牌識別系統,區停車場車牌識別系統,區停車場車牌識別系統,縣停車場車牌識別系統 |
面向地區 |
全國 |
人工神經網絡技術,計算機及相關技術發達的一些國家開始探討用人工神經網絡技術解決車牌自動識別問題,例如1994年M.M.M.FANHY等就成功地運用了BAM神經網絡方法對車牌上的字符進行自動識別,BAM神經網絡是由相同神經元構成的雙向聯想式單層網絡,每一個字符模板對應著個BAM矩陣,通過與車牌上的字符比較,識別出正確的車牌號碼。
傳統模式識別技術。傳統模式識別技術指結構特征法,統計特征法等。90年代,由于計算機視覺技術的發展,開始出現汽車牌照識別的系統化研究。1990年AS.Johnson等運用計算機視覺技術和圖像處理技術實現了車輛牌照的自動識別系統。該系統分為圖像分割、特征提取和模板構造、字符識別等三個部分。利用不同閩值對應的直方圖不同,經過大量統計實驗確定出車牌位置的圖像直方圖的閩值范圍,從而根據特定閩值對應的直方圖分割出車牌,再利用預先設置的標準字符模板進行模式匹配識別出字符。
幾乎每家都宣稱擁有高辨識率,但為了避免事后因為雙方對產品認知有差異,而將運作不良的責任互相推托,用戶在采購車牌辨識系統時,不妨要求實地測試,而且測試時間好超過兩個禮拜,比較能判斷辨識結果是否“言過其實”。因為多變的環境,兩個禮拜應該可以對于場域可能影響辨識率的情形,大約掌握了八成,如果只是測一天、甚至幾個小時,是無法了解的。