關鍵詞 |
縣停車場車牌識別系統,縣停車場車牌識別系統,縣停車場車牌識別系統,南停車場車牌識別系統 |
面向地區 |
全國 |
系統進行視頻車輛檢測,需要具備很高的處理速度并采用的算法,在基本不丟幀的情況下實現圖像采集、處理。若處理速度慢,則導致丟幀,使系統無法檢測到行駛速度較快的車輛,同時也難以在有利于識別的位置開始識別處理,影響系統識別率。因此,將視頻車輛檢測與牌照自動識別相結合具備一定的技術難度。
人工神經網絡技術,計算機及相關技術發達的一些國家開始探討用人工神經網絡技術解決車牌自動識別問題,例如1994年M.M.M.FANHY等就成功地運用了BAM神經網絡方法對車牌上的字符進行自動識別,BAM神經網絡是由相同神經元構成的雙向聯想式單層網絡,每一個字符模板對應著個BAM矩陣,通過與車牌上的字符比較,識別出正確的車牌號碼。
幾乎每家都宣稱擁有高辨識率,但為了避免事后因為雙方對產品認知有差異,而將運作不良的責任互相推托,用戶在采購車牌辨識系統時,不妨要求實地測試,而且測試時間好超過兩個禮拜,比較能判斷辨識結果是否“言過其實”。因為多變的環境,兩個禮拜應該可以對于場域可能影響辨識率的情形,大約掌握了八成,如果只是測一天、甚至幾個小時,是無法了解的。