關鍵詞 |
法庫縣太陽能并網發電,鐵嶺太陽能并網發電,肇州縣太陽能并網發電,縣太陽能并網發電 |
面向地區 |
全國 |
從太陽能獲得電力,需通過太陽電池進行光電變換來實現。它同以往其他電源發電原理完全不同。要使太陽能發電真正達到實用水平,一是要提高太陽能光電變換效率并降低其成本,二是要實現太陽能發電同的電網聯網。
太陽能光發電是指無需通過熱過程直接將光能轉變為電能的發電方式。 它包括光伏發電、光化學發電、光感應發電和光生物發電。 光伏發電是利用太陽能級半導體電子器件有效地吸收太陽光輻射能,并使之轉變成電能的直接發電方式,是當今太陽光發電的主流。在光化學發電中有電化學光伏電池、光電解電池和光催化電池,目前得到實際應用的是光伏電池。 [1]
目前世界上現有的有前途的太陽能熱發電系統大致可分為:槽形拋物面聚焦系統、中央接受器或太陽塔聚焦系統和盤形拋物面聚焦系統。在技術上和經濟上可行的三種形式是:30~ 80MW聚焦拋物面槽式太陽能熱發電技術(簡稱拋物面槽式);30~ 200MW點聚焦中央接收式太陽能熱發電技術(簡稱中央接收式);7.5~ 25kW的點聚焦拋物面盤式太陽能熱發電技術(簡稱拋物面盤式)。
太陽能發電是利用電池組件將太陽能直接轉變為電能的裝置。太陽能電池組件(Solar cells)是利用半導體材料的電子學特性實現P-V轉換的固體裝置,在廣大的無電力網地區,該裝置可以方便地實現為用戶照明及生活供電,一些發達國家還可與區域電網并網實現互補。目 前從民用的角度,在國外技術研究趨于成熟且初具產業化的是"光伏--建筑(照明)一體化"技術,而國內主要研究生產適用于無電地區家庭照明用的小型太陽能發電系統。
太陽能發電系統主要包括:太陽能電池組件(陣列)、控制器、蓄電池、逆變器、用戶即照明負載等組成。其中,太陽能電池組件和蓄電池為電源系統,控制器和逆變器為控制保護系統,負載為系統終端。
由于技術和材料原因,單一電池的發電量是十分有限的,實用中的太陽能電池是單一電池經串、并聯組成的電池系統,稱為電池組件(陣列)。單一電池是一只硅晶體二極管,根據半導體材料的電子學特性,當太陽光照射到由P型和N型兩種不同導電類型的同質半導體材料構成的P-N結上時,在一定的條件下,太陽能輻射被半導體材料吸收,在導帶和價帶中產生非平衡載流子即電子和空穴。同于P-N結勢壘區存在著較強的內建靜電場,因而能在光照下形成電流密度J,短路電流Isc,開路電壓Uoc。若在內建電場的兩側面引出電極并接上負載,理論上講由P-N結、連接電路和負載形成的回路,就有"光生電流"流過,太陽能電池組件就實現了對負載的功率P輸出。
在太陽能發電系統中,系統的總效率ηese由電池組件的PV轉換率、控制器效率、蓄電池效率、逆變器效率及負載的效率等組成。但相對于太陽能電池技術來講,要比控制器、逆變器及照明負載等其它單元的技術及生產水平要成熟得多,而且系統的轉換率只有17%左右。因此提高電池組件的轉換率,降低單位功率造價是太陽能發電產業化的和難點。太陽能電池問世以來,晶體硅作為主角材料保持著統治地位。對硅電池轉換率的研究,主要圍繞著加大吸能面,如雙面電池,減小反射;運用吸雜技術減小半導體材料的復合;電池超薄型化;改進理論,建立新模型;聚光電池等。