關鍵詞 |
江津氫能源設備,氫能源設備 |
面向地區 |
全國 |
碳排放強度管控
博辰氫能設備生產的氫混合氣體作為燃料,其二氧化碳排放強度嚴格遵循《工業企業溫室氣體排放核算和報告通則》(GB/T 32151)及地方環境監測標準。通過甲醇重整制氫工藝優化與余熱回收系統集成,單位氫氣生產環節碳排放僅為1.5-2.0kg CO?/Nm3 H?,較傳統煤制氫(4-5kg CO?/Nm3 H?)降低50%-60%。若配套碳捕集技術(CCUS),可進一步將碳排放量壓縮至0.3kg 以下,完全滿足歐盟《可再生能源指令》(RED II)對低碳燃料的嚴苛要求。
終端天然氣摻氫示范項目,則是在天然氣中科學摻入一定比例的氫氣,探索二者混合利用的創新模式。氫氣,作為清潔、的二次能源,與天然氣摻混后優勢盡顯。一方面,顯著降低了碳排放,助力環境保護與可持續發展;另一方面,拓展了天然氣的應用領域,為能源清潔轉型開辟了新路徑。如在一些試點地區,通過將氫氣摻入天然氣用于居民供暖與工業生產,在不改變原有基礎設施的前提下,有效提升了能源利用的清潔度,為大規模推廣清潔能源利用積累了寶貴經驗。
經濟性核心優勢解析
一、燃燒效率驅動成本顯著下降
摻氫天然氣憑借更充分的燃燒特性,在工業場景中展現出顯著的降本增效能力。以化工生產為例,企業原使用氣作為燃料時,每月燃料成本高達 100 萬元。引入摻氫技術后,基于氫氣高火焰傳播速度與優化的燃燒特性,系統燃燒效率提升 12%-15%,燃料消耗量相應降低 10%。成本結構由此發生轉變:燃料月支出縮減至 90 萬元,年累計節省 120 萬元。這不僅直接降低了企業生產成本,更使產品在市場定價中獲得 5%-8% 的價格浮動空間,顯著增強產品市場競爭力。長期來看,企業可將節省的資金用于技術研發或產能擴張,形成良性發展循環。
經過配比的混合溶液由輸送泵注入換熱器,與高溫裂解產物進行熱交換。此環節不僅實現甲醇溶液的初步氣化,同時有效降低裂解產物溫度,完成能量的初步回收利用。
初步加熱的混合溶液隨后進入蒸發器,經蒸發轉化為蒸汽,再通過加熱器持續升溫加壓,直至達到催化反應所需的工藝參數。
在反應器內,混合液蒸汽自上而下注入,經催化裂解反應生成含氫氣、二氧化碳等成分的氣態產物,從反應器底部排出。為實現能源循環利用,生成物再次進入換熱器,與新鮮混合液進行熱交換,釋放熱量后的產物進入后續分離純化環節,而吸熱升溫的新鮮混合液則進入下一反應循環。
這程通過熱交換集成設計,大化回收反應熱能,既降低能耗成本,又保障工藝連續穩定運行,展現了博辰氫能在甲醇制氫領域的能量管理技術與精細化工藝控制能力。
隨著 “雙碳” 目標上升為國家戰略,氫能作為零碳能源的關鍵價值愈發凸顯。《中央、關于完整準確全面貫徹新發展理念做好碳達峰碳中和工作的意見》從頂層設計層面,將氫能全產業鏈技術創新納入 “雙碳” 行動綱領。意見明確提出,加快推進綠氫制取、高壓氣態 / 低溫液態儲運、燃料電池電堆等核心技術的研發與示范應用,支持建設一批規模化氫能產業集群。這一戰略部署,不僅打通了氫能從生產、儲運到終端應用的全鏈條政策堵點,更為產業協同創新、跨界融合發展注入強勁動能,標志著我國氫能產業正式駛入 “政策驅動 + 技術突破” 的發展快車道。
即時供氫模式
針對中小規模用氫場景,博辰氫能以 “現場制氫 + 即產即用”模式突破傳統制氫困局:
安全隱患消除:摒棄傳統 “集中制氫 + 高壓儲運” 模式中氫氣鋼瓶儲存、長距離運輸等風險環節。現場制氫過程壓力控制在0.1-0.4MPa(低于傳統儲運的 20MPa 高壓),且設備配備全流程防爆監測系統,風險等級較傳統模式降低70% 以上;
成本結構優化:省去高壓壓縮、鋼瓶周轉、運輸物流等中間成本,綜合用氫成本較傳統外購氫氣降低30%-50%。以年用氫量 10 萬 Nm3 的企業為例,每年可節省成本50-80 萬元;
能源效率躍升:氫氣從生產到使用全程在封閉系統內完成,無儲運環節的能量損耗(傳統高壓運輸損耗率約 8%-12%),能源利用達97% 以上;
響應速度升級:系統啟動后30 分鐘內即可產出合格氫氣,實時匹配生產線用氫波動需求(如間歇性用氫的熱處理爐、燃料電池叉車),避免傳統儲氫模式中 “提前制備導致的冗余浪費” 或 “供應不及時的停產風險”。
這種 “安全、經濟、” 的現制現用模式,使博辰設備成為食品加工、電子制造、氫能叉車等中小規模用氫場景的理想選擇,以 “零儲運負擔 + 零能量浪費” 的優勢,重新定義工業領域的氫能供應范式。
四川博辰氫能是集氫能環保、節能設備研發、生產、銷售、技術于一體的集團公司。是服務于各型工業燃燒、金屬冶煉淬火、食品、電子、玻璃工業窯爐等行業的設備生產企業。
全國氫能源設備熱銷信息