本文采用了多種研究方法,以全面、深入地探究甲醇制氫技術及其現場運用。在案例分析法方面,通過對多個典型甲醇制氫現場應用案例進行詳細剖析,包括化工企業、能源站等不同場景下的甲醇制氫項目,深入了解甲醇制氫技術在實際運行中的工藝流程、設備運行狀況、制氫成本以及遇到的問題與解決方案。
對比研究法也是本文的重要研究方法之一。將甲醇制氫技術與其他常見制氫技術,如水電解制氫、天然氣重整制氫等進行多方面對比。在成本對比中,綜合考慮原料成本、設備投資、運行維護成本等因素,分析不同制氫技術在不同規模下的成本差異;在技術性能對比中,比較各種制氫技術的氫氣純度、制氫效率、反應條件等關鍵指標。
全面分析甲醇制氫過程中存在的安全風險,如甲醇的毒性、氫氣的易燃易爆性、高溫高壓反應條件等帶來的風險,并針對這些風險提出了系統的安全管理措施和風險防控策略。從設備安全設計、操作規程制定、人員培訓、應急救援預案等多個方面構建安全管理體系,為甲醇制氫項目的安全穩定運行提供保障,填補了該領域在安全管理方面研究的部分空白。
因此需要選擇合適的催化劑和優化反應條件來抑制副反應的發生。甲醇裂解制氫的反應方程式為CH_{3}OHrightleftharpoons CO + 2H_{2}),Delta H^{0}= + 90.7kJ/mol),同樣是吸熱反應。在高溫和催化劑的作用下,甲醇分子中的化學鍵斷裂,分解為一氧化碳和氫氣。
該反應相對簡單,但由于產物中一氧化碳含量較高,而一氧化碳會對后續的氫氣應用,如燃料電池的使用產生不利影響,因此通常需要對產物進行進一步的處理,如通過一氧化碳變換反應將一氧化碳轉化為二氧化碳和氫氣,以提高氫氣的純度和質量 。
傳統的高壓氣態儲氫需要將氫氣壓縮至的壓力(通常為 35MPa 或 70MPa),這不僅需要昂貴的壓縮設備和高壓儲存容器,而且存在較大的安全風險 。液氫儲存雖然能量密度高,但需要將氫氣冷卻至 - 253℃的低溫,能耗,儲存和運輸成本高昂,且對儲存設備的絕熱性能要求。