同時,在催化劑的作用下,甲醇和氧氣在催化劑表面發生復雜的化學反應,生成氫氣和二氧化碳。與甲醇水蒸氣重整制氫相比,甲醇部分氧化制氫具有啟動速度快、能量利用等優點,但反應過程中可能會產生一些副反應,如深度氧化反應,導致氫氣的選擇性降低。
因此需要選擇合適的催化劑和優化反應條件來抑制副反應的發生。甲醇裂解制氫的反應方程式為CH_{3}OHrightleftharpoons CO + 2H_{2}),Delta H^{0}= + 90.7kJ/mol),同樣是吸熱反應。在高溫和催化劑的作用下,甲醇分子中的化學鍵斷裂,分解為一氧化碳和氫氣。
傳統的高壓氣態儲氫需要將氫氣壓縮至的壓力(通常為 35MPa 或 70MPa),這不僅需要昂貴的壓縮設備和高壓儲存容器,而且存在較大的安全風險 。液氫儲存雖然能量密度高,但需要將氫氣冷卻至 - 253℃的低溫,能耗,儲存和運輸成本高昂,且對儲存設備的絕熱性能要求。
而甲醇制氫過程中產生的二氧化碳相對純凈,更易于捕集和利用。如果采用可再生能源合成的甲醇作為原料,如利用太陽能、風能電解水制氫,再將氫氣與二氧化碳合成甲醇,那么整個甲醇制氫過程可以實現近乎零碳排放,對環境的友好性顯著提高。
目前,我國甲醇產能世界前列,煤炭、天然氣等化石能源均可作為甲醇的生產原料,使得甲醇的供應充足且成本可控。而傳統的水電解制氫,由于其耗電量,電價在制氫成本中占比高達 70% - 80%,導致制氫成本居高不下 。
在設備投資方面,甲醇制氫裝置的規模可根據實際需求靈活調整,從小型的分布式制氫裝置到大型的工業制氫工廠均可實現。對于中小規模的用氫需求,甲醇制氫設備的投資相對較低,建設周期短,能夠快速滿足用戶的需求。