絮凝的數學描述一般分為兩個立的過程:遷移和粘附。遷移過程產生顆粒的碰撞。遷移是由水中顆粒的速度差異引起。在折板絮凝池中,速度差異認為是以下3種因素造成:(1)顆粒的布朗運動(異向絮凝中起主要作用;(2)紊流渦旋(同向絮凝);(3)顆粒間沉降速度的差異(差速絮凝)。粘附作用取決于和顆粒物本身表面性質有關的瞬時作用力。
眾多的水處理工作者均認為:只有具有與顆粒尺寸相同數量級的渦旋才對碰撞有效,其它的不起作用。由于實際的絮體顆粒尺寸變化幅度是1-1000um,因此,有很大一段的渦旋起作用,不能嚴格劃分大小渦旋的界限。紊動的擴散作用主要取決于大尺度的紊動。大渦旋的尺度可以認為與折板單元的尺度數量級相同。折板單元連續的縮放,使水流形成大量不同尺度的渦旋,促進了水流內部絮體顆粒間的相對運動,增加了碰撞機會,所以相對于隔板絮凝池,絮凝效果大大提高。
往復式絮凝池也稱隔板絮凝池。為一般常規的水平或垂直式水力絮凝反應池。即在流水渠中加裝了橫折或豎折檔板,使加藥混合后的水流形成近似于弦形彎曲。池內擋板或隔板的間距的安置使水流的速度梯度位分布呈逐步遞減。底部還有一定的坡度以保持水深。此種形式的池可在相當寬廣的流量范圍內得到合理的成效。機械絮凝器相比,絮凝時間由于更為均勻的剪力場,故而常只需要前者的一半。隔板可由各種建筑材料一般可由磚砌成或薄形鋼筋混凝土預制板構成。
為使水流中的顆粒相互碰撞,就使其與水流產生相對運動。水中的顆粒與水流產生相對運動好的辦法是改變水流的速度。改變速度的方法有兩種:①改變水流速度時造成的慣性效應來進行凝聚;②改變水流方向。在湍流中充滿著大大小小的渦旋。其中大渦旋能夠使流體進一步的摻混,使顆粒均勻擴散于流體中;同時創造大量的小漩渦,并將能量輸出給小渦旋。而小渦旋的作用是促進顆粒的碰撞,提高絮凝效率。微渦旋理論認為:水中微渦旋尺度與礬花顆粒尺度相近時混凝反應充分。而小渦旋的動力學致因是慣性效應,特別是湍流渦旋的離心慣性效應,由此可見湍流中微小渦旋的離心慣性效應是絮凝的重要動力學致因。
在往復式折板后面能夠形成渦旋,伴隨著顆粒粒徑在增加,渦旋的尺度由小變大,符合絮凝動力學規律;通過比較得出,圓弧形渠道絮凝池的湍流強度變化緩慢,分布更加均勻合理,不僅能夠滿足絮凝前期較大湍流強度的需要,也能滿足絮凝后期顆粒碰撞的湍流強度,證明圓弧轉彎渠道形比矩形轉彎渠道有更好的絮凝效果。
傳統往復式絮凝池在矩形渠道拐彎處速度方向改變為180°直接轉變,而圓弧形渠道拐彎處的速度方向則是逐漸變化,變化比矩形拐彎渠道平緩的多。而其圓弧形拐彎渠道能夠產生慣性離心力,進而產生各種微渦旋,根據王紹文教授提出的“慣性效應是絮凝的動力學致因”可知,圓弧形渠道能夠提高絮凝效率,即絮凝效率較高