折板絮凝池的構造是在池內放置一定數量的平行折板或波紋板。主要運用折板的縮放或轉彎造成的邊界層分離而產生的附壁紊流耗能方式,在絮凝池內沿程保持橫向均勻,縱向分散地輸入微量而足夠的能量,有效地提高輸入能量利用率和混凝設備容積利用率,增加液流相對運動,以縮短絮凝時間,提高絮凝體沉降性能。
絮凝的數學描述一般分為兩個立的過程:遷移和粘附。遷移過程產生顆粒的碰撞。遷移是由水中顆粒的速度差異引起。在折板絮凝池中,速度差異認為是以下3種因素造成:(1)顆粒的布朗運動(異向絮凝中起主要作用;(2)紊流渦旋(同向絮凝);(3)顆粒間沉降速度的差異(差速絮凝)。粘附作用取決于和顆粒物本身表面性質有關的瞬時作用力。
折板單元本身的水力特性對絮體顆粒碰撞的影響主要表現在:折板單元的造渦作用和連續均勻的單元設置改善了紊動能耗的分布,從而提高了絮凝方式的數值,因此提高了絮凝效果。水流通過折板單元,在漸擴段與漸縮段的作用下,可以形成對稱渦旋及單側渦旋。波峰處水流邊界層的分離是產生渦旋的動因。根據渦旋的擴散性,會進一步分解為小尺度的渦旋,直到與水流微團相關的雷諾數低到不能再產生更小的渦旋為止。
以來,全國大部分地表水源受污染,水體中藻類等有機物含量明顯增多,常規混凝處理效果并不理想。絮凝強化時,對因池體自身結構缺陷等因素造成的混凝動力不足、水力條件不當等問題往往不夠重視。
開發新型、、安全的絮凝劑,深入研究絮凝基礎理論及其控制技術,現已成為一門迅速發展的科學與技術。絮凝過程是一個復雜的動態過程,盡管要地表達某一水質、絮凝劑和水流流態特性因素對絮凝效果的影響還存在很大的困難,但隨著多學科技術集成度的提高以及實際應用的需要,預計折板絮凝研究將在如下方面有所發展:
往復式絮凝池也稱隔板絮凝池。為一般常規的水平或垂直式水力絮凝反應池。即在流水渠中加裝了橫折或豎折檔板,使加藥混合后的水流形成近似于弦形彎曲。池內擋板或隔板的間距的安置使水流的速度梯度位分布呈逐步遞減。底部還有一定的坡度以保持水深。此種形式的池可在相當寬廣的流量范圍內得到合理的成效。機械絮凝器相比,絮凝時間由于更為均勻的剪力場,故而常只需要前者的一半。隔板可由各種建筑材料一般可由磚砌成或薄形鋼筋混凝土預制板構成。
在往復式折板后面能夠形成渦旋,伴隨著顆粒粒徑在增加,渦旋的尺度由小變大,符合絮凝動力學規律;通過比較得出,圓弧形渠道絮凝池的湍流強度變化緩慢,分布更加均勻合理,不僅能夠滿足絮凝前期較大湍流強度的需要,也能滿足絮凝后期顆粒碰撞的湍流強度,證明圓弧轉彎渠道形比矩形轉彎渠道有更好的絮凝效果。
傳統往復式絮凝池在矩形渠道拐彎處速度方向改變為180°直接轉變,而圓弧形渠道拐彎處的速度方向則是逐漸變化,變化比矩形拐彎渠道平緩的多。而其圓弧形拐彎渠道能夠產生慣性離心力,進而產生各種微渦旋,根據王紹文教授提出的“慣性效應是絮凝的動力學致因”可知,圓弧形渠道能夠提高絮凝效率,即絮凝效率較高
通過混凝動力學的研究,得到了混凝動力學中速度梯度與時間的關系G=G(0)/1+Kt;并通過擬合得到往復式絮凝池速度梯度的變化規律近似符合混凝動力學對速度梯度變化的要求;同時參考了往復式絮凝池的新研究成果—將往復式絮凝池轉彎處的矩形渠道變成圓弧形狀,設計出一種的往復式絮凝池。通過數學模擬發現:優化后的往復式絮凝池拐彎處的圓弧形渠道能夠消除傳統往復式絮凝池轉彎處的死水區,而且圓弧形渠道處的水流速度比矩形渠道處的分布均勻,有利于節約能耗。