擴大γ相區的元素—亦稱奧氏體穩定化元素, 主要是Mn、Ni、Co、C、N、Cu等, 它們使A3點(γ-Fe α-Fe的轉變點)下降, A4點( γ-Fe的轉變點)上升, 從而擴大γ-相的存在范圍。其中Ni、Mn等加入到一定量后, 可使γ相區擴大到室溫以下, 使α相區消失, 稱為完全擴大γ相區元素。另外一些元素(如C、N、Cu等), 雖然擴大γ相區, 但不能擴大到室溫, 故稱之為部分擴大γ相區的元素。
合金元素的加入會影響鋼在熱處理過程中的組織轉變。
1. 合金元素對加熱時相轉變的影響
合金元素影響加熱時奧氏體形成的速度和奧氏體晶粒的大小。
(1)對奧氏體形成速度的影響: Cr、Mo、W、V等強碳化物形成元素與碳的親合力大, 形成難溶于奧氏體的合金碳化物, 顯著減慢奧氏體形成速度;Co、Ni等部分非碳化物形成元素, 因增大碳的擴散速度, 使奧氏體的形成速度加快;Al、Si、Mn等合金元素對奧氏體形成速度影響不大。
(2)對奧氏體晶粒大小的影響:大多數合金元素都有阻止奧氏體晶粒長大的作用, 但影響程度不同。強烈阻礙晶粒長大的元素有:V、Ti、Nb、Zr等;中等阻礙晶粒長大的元素有:W、Mn、Cr等;對晶粒長大影響不大的元素有:Si、Ni、Cu等;促進晶粒長大的元素:Mn、P等。
鋼板知識碳素結構鋼熱軋薄鋼板和鋼帶用于汽車、航空工業及其他部門。其鋼的牌號為沸騰鋼:08F、10F、15F;鎮靜鋼:08、08AL、10、15、20、25、30、35、40、45、50。25及25以下為低碳鋼板,30及30以上為中碳鋼板。
花紋鋼板廣泛用于造船、鍋爐、汽車、拖拉機、火車車廂及建筑等行業。
花紋鋼板由于其表面有突棱,有防滑作用,可用作地板、廠房扶梯、工作架踏板、船舶甲板、汽車底板等。
花紋鋼板用于車間、大型設備或船舶走道和樓梯的踏板,是表面壓出菱形或扁豆形花紋的鋼板。
鋼板是由普通碳素鋼1-3號乙類鋼生產的,厚度為2.5-8毫米,寬度為600-1800毫米,長度為2000-12000毫米。
花紋鋼板的規格以基本厚度(突棱的厚度不計)表示,有2.5-8毫米10種規格。花紋板鋼板用1-3號。
花紋板高不小于基板厚度0.2倍;
低合金鋼的出現可以追溯到19世紀的1870年,一種碳含量0.64~0.9%和鉻含量0.54~0.68%、抗拉強度685Mpa、彈性極限410Mpa鋼,次被采用于工程結構,建造了跨度158.5m的拱形橋梁。但這種鋼不理想也是十分明顯的,需要軋后熱處理,難以機械加工,耐蝕性又不良。隨后的1個多世紀的時間,不斷探索,大體上可以把低合金鋼區劃為三個不同特征的發展階段,在20世紀20年代以前,20~60年代及60年代以后。前兩個階段姑且合稱為傳統的低合金鋼發展階段,后一階段可以稱為現代低合金鋼的發展階段。
16Mn 是我國低合金高強鋼中用量多、產量大的鋼種。使用狀態的組織為細晶粒的鐵素體—珠光體,強度比普通碳素結構鋼Q235高約20%~30%,耐大氣腐蝕性能高20%~38%。
15MnVN 中等級別強度鋼中使用多的鋼種。強度較高,且韌性、焊接性及低溫韌性也較好,被廣泛用于制造橋梁、鍋爐、船舶等大型結構。
強度級別超過500MPa后,鐵素體和珠光體組織難以滿足要求,于是發展了低碳貝氏體鋼。加入Cr、Mo、Mn、B等元素,有利于空冷條件下得到貝氏體組織,使強度更高,塑性、焊接性能也較好,多用于高壓鍋爐、高壓容器等。