11年
關鍵詞 |
回收手機驅動IC,回收數碼驅動IC,回收驅動IC芯片,收購LCD顯示驅動IC |
面向地區 |
全國 |
部分分離型顯示驅動芯片方案,TED+Gate IC
該方案將TCON和Source IC整合為一顆TED IC,Gate IC為立芯片,系統主控芯片通過FPC輸入System Data, TED IC中TCON模塊對數據進行轉換后在芯片內部輸入給Source模塊,同時通過玻璃走線將Gate Control信號輸入Gate IC。TED IC和Gate IC分別通過玻璃走線向Display Area傳輸信號。該方案對驅動芯片進行了部分整合,但距離單芯片解決方案仍有較大差距。
該方案主要在中尺寸顯示面板發展早期出現,大部分使用LVDS接口,并且使用該TED IC均需要搭配其特定的Gate IC使用。目前主要在低端應用市場如汽車后裝市場流通。
整合型顯示驅動單芯片方案,One Chip Solution
隨著面板制造技術的進步,以及市場需求的推動,面板廠逐步引入GIA(Gate Driver in Array)技術, 使用GIA電路取代Gate IC, 將Gate IC和Source IC進行整合。
傳統TFT-LCD面板Gate線路采用配線從驅動芯片導入信號使TFT開啟,將顯示信號輸入到像素單元完成畫面顯示。由于每一條配線對應一行Gate電路,配線條數較多,占用空間較大。為對應窄邊框和高解析度產品需求,集成柵極驅動電路(GIA, Gate Driver in Array)技術應運而生。GIA即在TFT玻璃上通過用MOSFET所搭建的電路,給每行設計一組GIA電路,僅輸入少量GIA Timing信號,可輸出多路Gate控制信號,從而替代Gate Driver IC的功能。目前GIA方案已廣泛應用在智能手機、平板電腦等主流顯示市場,促進了智能手機、平板電腦等領域整合型顯示驅動芯片的發展。
顯示面板驅動芯片類型通常由面板設計規格決定,而面板設計規格源于下游市場及客戶的需求。一款顯示面板是選擇使用整合型驅動芯片方案還是分離型驅動芯片方案,通常在面板設計初期就會決定,一旦面板設計定型后,相應的面板驅動芯片架構也隨之確定。
以上三種架構在玻璃基板走線以及芯片綁定連接的Pin腳設計均完全不同,每一種面板設計架構對應一種芯片,即或是分離型芯片,或是整合型芯片。分離型芯片(包括TED芯片)適配的面板,無法用單芯片替代,反之亦然。
受應用場景、客戶需求的影響,單芯片產品與分離型芯片產品的技術路線存在較大差異。單芯片架構需整合數字電路、模擬電路、算法軟件等,相比分離型芯片要投入較多資源、人力滿足高整合、低功耗、抗干擾等多個設計規格;而在模擬電路設計方案、通信接口協議、系統架構等方面,整合型芯片與分離型芯片的設計方案均存在明顯差異。所以DDIC企業一般需搭建立研發團隊開展整合型、分離型的研發工作,資源、人力成本投入高。行業內惟有個別企業,能在小尺寸(移動終端)、大尺寸兩個領域同時擁有先發優勢。
大尺寸LCD驅動IC的特點
,高電壓工藝。模擬電路中電壓越高,驅動能力越強,因此大尺寸LCD驅動IC采用高電壓制造工藝,通常Source Driver IC為10~12V, Gate Driver IC更高,達40V。
第二,運行頻率高。液晶顯示器的分辨率越來越高,這就意味著掃描列數的增加, Gate Driver IC不斷提高開關頻率, Source Driver IC不斷提高掃描頻率。
第三,封裝工藝特殊。LCD驅動IC通常綁定在LCD面板上,因此厚度盡可能地薄,通常采用高成本的TCP封裝。還有特別追求薄的,采用COG封裝,再有就是目前正在興起的COF封裝。
第四,管腳數特別多。Gate Driver IC少256腳, Source Driver IC少384腳。
第五,單一型號出貨量特別大。驅動IC 單月平均出貨量高達1.5億片,而其中平均每個型號的出貨量達差不多在300萬片左右。
DDIC通過掃描的方式驅動顯示屏。從上圖可以看到,給相應的行和列加上電壓就可以點亮相應的像素了。但是問題來了,如果我們想同時點亮2B和5E,給2列、5列以及B行、E行同時加電壓的話,會發現連5B和2E也被無辜點亮。為了防止這種情況的發生,我們在時間上給予各條線先后順序的區分。
目前選擇的是每次處理一條X軸的線,每次只給一條橫線加電壓,然后再掃描所有Y軸上的值,然后再迅速處理下一條線,只要我們切換的速度夠快,因為視覺殘留現象,是可以展現出一幅完整的畫面的。這種方式叫做Passive Matrix。
然后這樣的方式的大的缺點就是,除非我們每條線切換的速度超級無地塊,否則,實際上每條線可以分到的有電壓的時間是非常短的,一旦電壓移到下一條線上,原來這條線上的像素就全都暗下去了,整體畫面給人的感覺是非常暗淡,不明亮的。
還有一個問題就是,如果某個像素不該點亮,但是因為它旁邊的像素該被點亮,所以相應的X軸被加上了電壓,這個像素也會受到旁邊像素的一丟丟影響,被點亮一丟丟,結果就是圖像的清晰度很不好,圖像的邊緣會模糊。
一旦加上電壓,這個電容是可以保存能量的,在電壓再次回到這一條線的像素上之前,電容會釋放自己保存的電壓來保持像素的亮度。這樣,整體的亮度就會得到大幅提升。其次,每個像素的開關起到一個門檻的作用,這樣,如果一個像素被加上電壓點亮,給相鄰的像素帶來一丟丟影響,因為門檻的存在,這一丟丟的影響是不能點亮相鄰的像素的。
這種方式就做做Active Matrix(AMOLED的AM就是Active Matrix的縮寫)。
AM的好處當然是大大的,但是這樣的成本就是TFT的結構變得更加復雜,1080P的分辨率就不僅僅是600多萬個電氣元件了,像OLED那種每個像素需要至少五、六個晶體管的,豈不是少也要3000多萬個晶體管?如果是4K分辨率呢?
全國收購液晶驅動IC熱銷信息