11年
關鍵詞 |
中山收購液晶驅動IC,回收驅動IC芯片,收購TDDI驅動IC,回收數碼驅動IC |
面向地區 |
全國 |
查看詳情 收購液晶驅動IC/NT36525BH-DP/4YA裸片 ¥3000.00 查看詳情 采購液晶驅動IC/NT36672H-DP/3YB ¥3000.00
回收元器件-IC芯片-工廠庫存呆滯電子物料-竭誠服務,誠信經營,歡迎咨詢口碑好,回收,面向全國專人上門看貨估價,現款,正規公司,多年回收行業經驗
完全分離型顯示驅動芯片方案,TCON+Source IC+Gate IC
在完全分離型芯片架構中,TCON立于Driver IC設計在PCB上,Source IC和Gate IC分別綁定在玻璃側邊和底部。TCON輸出Display Data、Source Control和Gate Control信號,通過PCB、FPC和玻璃基板走線,分別傳輸給Source IC和Gate IC。Source IC和Gate IC分別通過玻璃基板走線向Display Area(顯示區域)傳輸電壓信號驅動顯示面板工作。
整合型顯示驅動單芯片方案,One Chip Solution
隨著面板制造技術的進步,以及市場需求的推動,面板廠逐步引入GIA(Gate Driver in Array)技術, 使用GIA電路取代Gate IC, 將Gate IC和Source IC進行整合。
傳統TFT-LCD面板Gate線路采用配線從驅動芯片導入信號使TFT開啟,將顯示信號輸入到像素單元完成畫面顯示。由于每一條配線對應一行Gate電路,配線條數較多,占用空間較大。為對應窄邊框和高解析度產品需求,集成柵極驅動電路(GIA, Gate Driver in Array)技術應運而生。GIA即在TFT玻璃上通過用MOSFET所搭建的電路,給每行設計一組GIA電路,僅輸入少量GIA Timing信號,可輸出多路Gate控制信號,從而替代Gate Driver IC的功能。目前GIA方案已廣泛應用在智能手機、平板電腦等主流顯示市場,促進了智能手機、平板電腦等領域整合型顯示驅動芯片的發展。
大尺寸LCD驅動IC的特點
,高電壓工藝。模擬電路中電壓越高,驅動能力越強,因此大尺寸LCD驅動IC采用高電壓制造工藝,通常Source Driver IC為10~12V, Gate Driver IC更高,達40V。
第二,運行頻率高。液晶顯示器的分辨率越來越高,這就意味著掃描列數的增加, Gate Driver IC不斷提高開關頻率, Source Driver IC不斷提高掃描頻率。
第三,封裝工藝特殊。LCD驅動IC通常綁定在LCD面板上,因此厚度盡可能地薄,通常采用高成本的TCP封裝。還有特別追求薄的,采用COG封裝,再有就是目前正在興起的COF封裝。
第四,管腳數特別多。Gate Driver IC少256腳, Source Driver IC少384腳。
第五,單一型號出貨量特別大。驅動IC 單月平均出貨量高達1.5億片,而其中平均每個型號的出貨量達差不多在300萬片左右。
驅動IC是控制液晶面板及AMOLED面板開關及顯示方式的集成電路芯片。隨著面板顯示分辨率及數據傳輸速度的提高,其對驅動芯片的要求也不斷提高。顯示驅動芯片(Display Driver IC,簡稱“DDIC”)是面板的主要控制元件之一,也被稱為面板的“大腦”,主要功能是以電信號的形式向顯示面板發送驅動信號和數據,通過對屏幕亮度和色彩的控制,使得諸如字母、圖片等圖像信息得以在屏幕上呈現。
上下兩玻璃基板的外側,分別貼有偏光片(或稱偏光膜)。當像素透明電極與公共透明電極之間加上電壓時,液晶分子的排列狀態會發生改變。此時,入射光透過液晶的強度也隨之發生變化。液晶顯示器正是根據液晶材料的旋光性,再配合上電場的控制,便能實現信息顯示。
OLED的DDI和LCD的還不一樣,尤其是大屏電視的OLED DDIC。因為LTPS(Low Temperature Poly-Silicon,簡稱為p-Si)材質的不均一,屏幕越大,信號到達TFT各個角落的時間的差異就越大,那么畫面就會出現意想不到的撕裂的現象。所以的OLED DDI里面可以儲存一張自己驅動的TFT的不均一性的照片,然后根據具體的不均一性的情況來對信號進行調整。
另外還需要有一個負責分配任務給它們的芯片,叫做Timing Controller,簡稱T-CON。一般情況下,T-CON是顯示器里面復雜的芯片,也可以看做是顯示器的“CPU"。它主要負責分析從主機傳來的信號,并拆解、轉化為Source/Gate IC可以理解的信號,再分配給Source/Gate去執行,T-CON具有這種功能是因為T-CON具有Source/Gate沒有的控制時間節奏的能力,所以叫Timing Controller。越來越高的分辨率、刷新率和色深都對T-CON的處理能力以及前后各種接口的信息傳輸能力提出了挑戰。
一旦加上電壓,這個電容是可以保存能量的,在電壓再次回到這一條線的像素上之前,電容會釋放自己保存的電壓來保持像素的亮度。這樣,整體的亮度就會得到大幅提升。其次,每個像素的開關起到一個門檻的作用,這樣,如果一個像素被加上電壓點亮,給相鄰的像素帶來一丟丟影響,因為門檻的存在,這一丟丟的影響是不能點亮相鄰的像素的。
這種方式就做做Active Matrix(AMOLED的AM就是Active Matrix的縮寫)。
AM的好處當然是大大的,但是這樣的成本就是TFT的結構變得更加復雜,1080P的分辨率就不僅僅是600多萬個電氣元件了,像OLED那種每個像素需要至少五、六個晶體管的,豈不是少也要3000多萬個晶體管?如果是4K分辨率呢?
DDIC的封裝形式
自從三星在2013年推出曲面屏(Curved Display),柔性顯示屏技術迅速發展。大體上,顯示屏分兩類,即硬質顯示屏和柔性顯示屏。硬質顯示屏使用硬質玻璃作為基板,而柔性屏使用一種塑料(polyimide,聚酰亞胺,簡稱PI,有機高分子材料)作為基板,具有可彎曲、可折疊、可卷曲的性能。一些智能手機在屏幕邊緣彎折,提升了質感,就是歸功于這種材料。
客觀來說,COG、COF、COP是當下屏幕顯示驅動芯片的3種不同封裝技術,在廣大媒體傳導下也被稱為“屏幕封裝”。三者主要的應用是實現手機或電視系統對其屏幕(LCD,OLED)的驅動控制,以及與其它系統例如主板FPCB、部件等的信號鏈接。
COG(Chip On Glass)是將手機屏幕顯示驅動芯片(Display Driver IC,DDIC)直接粘合鏈接到在玻璃材質為主的剛性玻璃基板上(Glass Substrate),之后由FPCB鏈接至手機其余PCB或部件。通常用于剛性顯示屏,例如LCD。
而對于COP封裝,只能采用OLED屏幕,因為在OLED屏幕中,ITO的基材可以是玻璃,也可以是一種可彎折塑料。如果基材是塑料的話,可以將連接FPC和驅動IC的基材部分實現彎折,從而只需要預留出點膠區域的寬度就行,這種情況下,下border能做到更薄
AMOLED DDIC進階——集成觸摸控制器IC和顯示驅動器IC TDDI
在觸控屏中集成觸控檢測和顯示更新功能涉及兩個方面:顯示面板疊層;控制觸控和顯示這兩種功能的IC。
TDDI解決方案的架構設計和實現絕非微不足道。為了提高顯示噪聲管理和電容檢測性能,現在的新設計在觸控檢測功能和顯示更新功能之間實現了協調和同步。這樣的設計不再像立的疊層式顯示面板和外嵌式顯示屏那樣受到諸多限制,后者的觸控功能和顯示功能通常是相互立運行的。
全國收購液晶驅動IC熱銷信息