關鍵詞 |
宏隆分子篩回收,麗水分子篩回收,分子篩回收價格,分子篩回收流程 |
面向地區 |
全國 |
分子篩的骨架結構由初級結構單元進行有限或者無限的連接后而形成的。有限的結構單元,如次級結構單元通常是指由TO4四面體通過共同使用的氧原子,從而按照不同的連接方式組成的多元環結構,比較常見的環結構如四元環、五元環、六元環、雙四元環和雙六元環。現在所發現的為18種次級結構單元。例如4-4次級結構單元,它所代表的的是兩個四元環,即雙四元環。正如我們所熟知的A型分子篩,它就是通過SOD籠與雙四元環之間進行連接從而形成了沸石分子篩。當然我們所說的SBU只是在理論意義上的拓撲單元,是為了更好的理解和解釋沸石分子篩的結構,不能這樣就認為是沸石分子篩晶化過程的真實物種。
分子篩的骨架中存在一特征籠狀結構單元,而籠狀結構單元又是根據確定它們多面體的多元環來描述的。例如,我們所熟悉的SOD籠它由八個六元環和六個四元環來組成的,一般簡寫成4668。不同的分子篩骨架會含有相同的籠狀結構單元,換句話說,同一個籠狀結構單元通過不同連接方式會形成不同的分子篩骨架結構類型。一個經典的例子就是SOD籠。
固相轉變機理是由Flanigen和Breck提出的,也是早提出的沸石分子篩晶化機理。他們認為:
在沸石分子篩的整個晶化過程中只是凝膠固相本身在水熱條件下產生,然后直接進行硅鋁酸鹽骨架的結構重排,進而導致了沸石分子篩的成核和晶體的生長,而在沸石分子篩晶化過程中既沒有凝膠固相的溶解,也并沒有液相直接來參與沸石分子篩的成核以及晶體的生長。
,沸石分子篩合成所需的各種原料混合后,主要物種硅酸鹽與鋁酸鹽聚合生成硅鋁酸鹽初始凝膠。同時,凝膠間液相雖然也產生,然而液相部分并不參與晶化成核的過程中。其次,所形成的硅鋁酸鹽初始凝膠在OH-離子的作用下卻不斷發生解聚與結構重排,從而形成某些沸石晶化所需要的初級結構單元。后,這些初級結構單元進一步圍繞著水合陽離子發生重排構成多面體,這些多面體再進一步聚合、連接、形成沸石分子篩晶體。
雙相轉變機理
在人們對于沸石分子篩晶化究竟是通過液相轉變機理還是通過固相轉變機理爭執不清時,八十年代之后,又有科學家提出了雙相轉變的機理。雙向轉變機理認為液相轉變和固相轉變同時存在沸石分子篩晶化過程中,既可以分別發生在兩種晶化反應體系中,也可以同時發生在一個體系中。
Gabelica等人從對ZSM-5分子篩以及Na Y沸石晶化的研究印證了雙相轉變機理的存在性。Iton等人在ZSM-5分子篩的晶化過程中應用小角中子散射技術進行研究,同時發現使用不同的硅源,ZSM-5沸石分子篩的晶化是遵循不同的機理進行。從而得出即使是同一種類型沸石分子篩,在不同的晶化條件下其生長的機理是不一樣的結論。
合成沸石分子篩的基本原料有:硅源、鋁源、堿源、金屬陽離子、其它礦化劑、模板劑和水等。常用的硅源有白炭黑、硅溶膠、固體硅膠、有機硅酸酯、水玻璃等。常用的鋁源有偏鋁酸鈉、硫酸鋁、薄水鋁石、金屬鋁、硝酸鋁、異丙醇鋁、氫氧化鋁等。堿源有氫氧化鈉,氫氧化鉀等。金屬陽離子包括堿金屬陽離子和堿土金屬離子如:Li+、Na+、K+、Ca2+、Ba2+等。分子篩合成的礦化劑有兩種:氫氧根離子和氟離子。模板劑有各種含氮的有機物、季磷鹽等。
對于合成沸石分子篩,溫度是一個很重要的因素。溫度變化會影響水在反應釜中的壓力的變化、硅鋁酸鹽的聚合狀態和聚合反應、凝膠的生成和溶解與轉變、分子篩的成核與生長以及介穩相間的轉晶。相同的體系在不同的溫度下可能會得到完全不一樣的物相,溫度越高得到的沸石的尺寸和孔體積越小,晶體骨架密度相應增大。一般而言在150 °C以下,初級結構往往是四元環或六元環,而當溫度150 °C,則往往是五元環的初級結構單元。由此可見,在高溫水熱條件下,無機物(主要是硅鋁酸鹽物種)的造孔規律和晶化溫度與水蒸汽壓之間存在著密切的聯系。
晶化時間往往也是分子篩合成的一個重要因素。晶化時間不夠常常會有大量的原料未轉化,時間過長,往往會發生晶體轉晶的現象,一般由比較空曠的結構轉化為比較致密的結構。晶化時間與晶化溫度往往是相輔相成的,降低溫度,就要增加晶化時間;升高溫度,有時就要縮短晶化時間。