同時(shí),大尺度的渦旋從主流吸取動(dòng)能,在運(yùn)動(dòng)過程中傳遞給較小尺度的渦旋,這樣逐級(jí)傳遞,一直到微尺度的渦旋。在較大尺度的渦運(yùn)動(dòng)中,流體粘性幾乎不起作用,可忽略不計(jì),因而在動(dòng)能傳遞中幾乎沒有能耗;而在微尺度的渦旋運(yùn)動(dòng)中,流體粘性將起主要作用,傳送到這些低級(jí)渦旋的能量就會(huì)通過粘性作用轉(zhuǎn)化為熱能。水流中同時(shí)存在無數(shù)大大小小的渦旋,產(chǎn)生一系列的脈動(dòng)頻率,具有連續(xù)的頻譜。
通過混凝動(dòng)力學(xué)的研究,得到了混凝動(dòng)力學(xué)中速度梯度與時(shí)間的關(guān)系G=G(0)/1+Kt;并通過擬合得到往復(fù)式絮凝池速度梯度的變化規(guī)律近似符合混凝動(dòng)力學(xué)對(duì)速度梯度變化的要求;同時(shí)參考了往復(fù)式絮凝池的新研究成果—將往復(fù)式絮凝池轉(zhuǎn)彎處的矩形渠道變成圓弧形狀,設(shè)計(jì)出一種的往復(fù)式絮凝池。通過數(shù)學(xué)模擬發(fā)現(xiàn):優(yōu)化后的往復(fù)式絮凝池拐彎處的圓弧形渠道能夠消除傳統(tǒng)往復(fù)式絮凝池轉(zhuǎn)彎處的死水區(qū),而且圓弧形渠道處的水流速度比矩形渠道處的分布均勻,有利于節(jié)約能耗。
池的圓弧形轉(zhuǎn)彎渠道改變了矩形渠道轉(zhuǎn)彎處180°速度方向變化帶來的能耗,降低了能耗;同時(shí)圓弧形渠道處的水流方向是逐漸變化的,從而產(chǎn)生慣性離心力,進(jìn)而產(chǎn)生大量微渦旋,提高了絮凝效率 。